Topical colchicine selection of keratinocytes transduced with the multidrug resistance gene (MDR1) can sustain and enhance transgene expression in vivo.

نویسندگان

  • W Pfutzner
  • A Terunuma
  • C L Tock
  • E K Snead
  • T M Kolodka
  • M M Gottesman
  • L Taichman
  • J C Vogel
چکیده

For skin gene therapy, achieving prolonged high-level gene expression in a significant percentage of keratinocytes (KC) is difficult because we cannot selectively target KC stem cells. We now demonstrate that topical colchicine treatment can be used to select, in vivo, KC progenitor cells transduced with the multidrug resistance gene (MDR1). When human skin equivalents containing MDR1-transduced KC were grafted onto immunocompromised mice, topical colchicine treatments significantly increased (7-fold) the percentage of KC expressing MDR1, compared to vehicle-treated controls, for up to 24 wk. Topical colchicine treatment also significantly enhanced the amount of MDR1 protein expressed in individual KC. Furthermore, quantitative real-time PCR analysis of MDR1 transgene copy number demonstrates that topical colchicine treatment selects and enriches for KC progenitor cells in the skin that contain and express MDR1. For clinical skin gene therapy applications, this in vivo selection approach promises to enhance both the duration and expression level of a desired therapeutic gene in KC, by linking its expression to the MDR1 selectable marker gene.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanolipoparticles-mediated MDR1 siRNA delivery reduces doxorubicin resistance in breast cancer cells and silences MDR1 expression in xenograft model of human breast cancer

Objective(s): P-glycoprotein (P-gp) is an efflux protein, the overexpression of which has been associated with multidrug resistance in various cancers. Although siRNA delivery to reverse P-gp expression may be promising for sensitizing of tumor cells to cytotoxic drugs, the therapeutic use of siRNA requires effective carriers that can deliver siRNA intracellularly with minimal toxicity on targe...

متن کامل

Gene transfer of multidrug resistance into a factor-dependent human hematopoietic progenitor cell line: in vivo model for genetically transferred chemoprotection.

To develop a rapid preclinical in vivo model to study gene transfer into human hematopoietic progenitor cells, MO-7e cells (CD-34+, c-kit+) were infected with multidrug resistance (MDR1)-containing retroviruses and then transplanted into nonobese diabetic severe combined immunodeficient mice (NOD SCID). MO-7e cells infected with a retrovirus encoding the human MDR1 cDNA showed integration, tran...

متن کامل

The effect of resveratrol on the expression of MDR1 gene in leukemic lymphoblast’s of acute lymphoblastic leukemia patients

 Background: Chemotherapy plays a very important role in the treatment of leukemia but the resistance properties of the lymphoblasts limit the effect of chemotherapy. One of the main mechanisms of resistance to chemotherapy is the increased expression of MDR1 gene. The aim of this study was to explore the effect of resveratrol on the expression of MDR1 gene in leukemic lymphoblast of new...

متن کامل

Paclitaxel chemotherapy after autologous stem-cell transplantation and engraftment of hematopoietic cells transduced with a retrovirus containing the multidrug resistance complementary DNA (MDR1) in metastatic breast cancer patients.

The MDR1 multidrug resistance gene confers resistance to natural-product anticancer drugs including paclitaxel. We conducted a clinical gene therapy study to determine whether retroviral-mediated transfer of MDR1 in human hematopoietic cells would result in stable engraftment, and possibly expansion, of cells containing this gene after treatment with myelosuppressive doses of paclitaxel. Patien...

متن کامل

Non-P-glycoprotein mediated mechanism for multidrug resistance precedes P-glycoprotein expression during in vitro selection for doxorubicin resistance in a human lung cancer cell line.

Two different mechanisms that contribute to multidrug resistance (MDR) were found in derivatives of the human squamous lung cancer cell line SW-1573. The parental cell line has a low amount of mdr1 P-glycoprotein mRNA. In three independent selections for doxorubicin resistance, MDR variants arose in which mdr1 P-glycoprotein mRNA and protein was not detectable. Selection on higher doxorubicin c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 20  شماره 

صفحات  -

تاریخ انتشار 2002